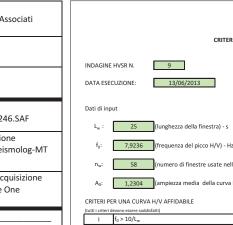
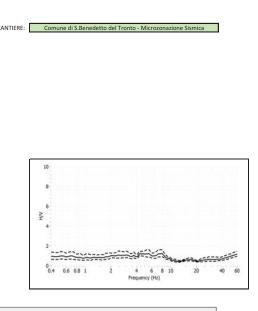

COMUNE DI SAN BENEDETTO DEL TRONTO STUDIO DI MICROZONAZIONE SISMICA MISURA DI RUMORE AMBIENTALE SU STAZIONE SINGOLA HVSR9



	Committente	Località	Operatore	
	Comune San Benedetto del Tronto	S.Benedetto del Tronto (AP)	SGA Studio Geologi Associati	
			Dott. Luciano Faralli	
	Data	Ora	GPS tipo e num.	
	13 Giugno 2013	15:52 - 16:22		
	Latitudine	Longitudine	Altitudine	
	408846 (UTM33N WGS84)	4753084 (UTM33N WGS84)	17 m s.l.m.	
	Denominazione punto di misura		Nome file	
	HVSR9		MT_20130613_162246.SAF	
	Frequenza di campionamento (Hz)	Durata registrazione (min, sec)	Software di acquisizione	
	300 Hz	30'00"	Seismowin 1.3.4 - Seismolog-MT	
			1.2.1 (SARA S.r.l.)	
	Strumentazione di misura	Sensore (tipo e Hz)	Strumentazione di acquisizione	
	Sismografo digitale triassiale	Velocimetri HS1 – Geospace	Netbook Acer Aspire One	
	SR04-GEOBOX 45 (SARA s.r.l.)	Tecnology da 4.5 Hz	1	
	Vento assent	e 🔲 debole 🗹 medio 🖵 forte 🖵	Misura (se disponib.)	
٦	Condizioni Pioggia assent	e ☑ debole □ medio □ forte □	Misura (se disponib.)	

_		Vento assente □ debole ☑ medio □ forte □ Misura (se disponib.)
	Condizioni meteorologiche	Pioggia assente ☑ debole □ medio □ forte □ Misura (se disponib.)
	meteorologicne	Temperatura (approx.) Note
	Tipo di terreno	terreno ∅ (duro ѝ soffice ロ) ghiaia ロ sabbia ៧ limo-argilloso ロ roccia ロ erboso ロ asfalto ロ cemento ロ calcestruzzo ロ pavimentazione ロ altro ロ note sabbia limosa con ghiaia
		suolo secco ☑ suolo umido/bagnato □ note
	Accoppiamento	artificiale sensore/suolo 🗹 no 🖵 si, tipo

Densità e	difici	nes	suno 🛭	☐ spa	arsi 🗹	densi	altro, tipo
Transient	i.						Sorgenti puntuali di rumore identificabili (fabbriche, pompe,
	nessuno	ьi	moderati	Ę.	to si	distanza	fiumi,
	nes	pochi	E	molti	molto		Strutture vicine (alberi, sondaggi, edifici, ponti, strutture sotterranee)
auto		Х				10 m	(descrizione, altezza o profondità, distanza)
camion	Х						Siepe, altezza circa 2,5 m, a circa 1 m di distanza
pedoni		Х				10 m	


L					
ſ	Osservazioni				Frequenza di picco misurata in
					campagna
	FIG.5				8 Hz
L					

(tutti i criter	i devono essere soddisfatti)	
- 1	f ₀ > 10/L _w	7,9
II	$n_c(f_0) > 200$	1
	$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5 \text{ Hz}$	E
III	o $\sigma_A(f)$ < 3 per $0.5f_0$ < f < $2f_0$ se f_0 < 0.5 Hz	
	PER UN PICCO H/V CHIARO	•
(almeno 5 ci	iteri su 6 soddisfatti) esiste f' in $[f_0/4, f_0]$ $A_{H/V}(f') < A_0/2$	
		_

58 (numero di finestre usate nell'analisi)

- 1	esiste f in $[f_0/4, f_0]$ $A_{H/V}(f) < A_0/2$	0 times	NO
Ш	esiste f^+ in $[f_0, 4f_0]$ $A_{H/V}(f^+) < A_0/2$	17 times	OK
III	A ₀ >2	1.2304<2	NO
IV	$f_{picco} [A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.427 >0.05	NO
V	$\sigma_f < \varepsilon(f_0)$	0.7550 > 0.396	NO
VI	$\sigma_a(f_0) < \theta(f_0)$	1.3110 < 1.58	OK

Lw	lunghezza della finestra	
n _w	numero di finestre usate nell'analisi	
$n_c = L_w n_w f_0$	numero di cicli significativi	
f	frequenza attuale	
f_0	frequenza del picco H/V	
$\sigma_{\rm f}$	deviazione standard della frequenza del picco H/V	
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$	
A ₀	ampiezza media della curva H/V alla frequenza f ₀	
$A_{H/V}(f)$	ampiezza media della curva H/V alla frequenza f	
	frequenza tra f ₀ /4 e f ₀ alla quale A _{H/V} (f) < A ₀ /2	
f f	frequenza tra f ₀ e 4f ₀ alla quale A _{H/V} (f *) < A ₀ /2	
$\sigma_A(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media	
	deve essere moltiplicata o divisa	
$\sigma_{logH/V}(f)$	deviazione standard della funzione log A _{H/V} (f)	
$\Theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$	

INDAGINE HVSR

VALORE

Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 fo	0.2 f ₀	0.15 f ₀	0.10 fo	0.05 6
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0) \operatorname{per} \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

MISURA DI MICROTREMORE A STAZIONE SINGOLA: HVSR9

Durata registrazione: 30' Frequenza campionamento: 300 Hz Lunghezza finestra: 25 s Tipo di lisciamento: triangolare Analisi effettuata tra 0.4-60Hz Picco H/V (fo) a 7.92 ± 0.76 Hz nel range 0.4-60 Hz, con Ao = 1.23

CLASSE DI QUALITA' (Albarello & Castellaro, 2011, Appendice 2): Classe B2: non soddisfa la condizione di isotropia e non ha un picco chiaro secondo i criteri di SESAME

DIDASCALIE FIGURE

- Fig.1 Rapporto spettrale orizzontale su verticale con tracce per singole finestre di analisi
- Fig. 2 Rapporto spettrale orizzontale su verticale
- Fig. 3 Spettri delle singole componenti
- Fig. 4 Direzionalità H/V
- Fig. 5 Scheda di campagna di misurazione
- Fig. 6 Finestre temporali utilizzate nell'analisi
- Fig. 7 Analisi di qualità della curva e del picco secondo i criteri SESAME
- Fig. 8 Documentazione fotografica